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The spatial pattern of downy mildew (Pseudoperonospora humuli) on hop (Humulus lupulus) was characterized over

4 years to aid in deriving an appropriate incidence–density relationship. From 472 disease assessments (datasets), discrete

distributions were fitted to the datasets to determine aggregation of disease density. Where distributions were able to be fit-

ted, the Poisson distribution fitted 4% of the datasets and the negative binomial distribution fitted 87% of the datasets. Lar-

ger-scale patterns of disease were assessed by autocorrelation and runs analysis; both indicated aggregation of diseased

plants was less common than aggregation of disease within plants. Taylor’s power law indicated disease density was aggre-

gated and related to mean disease density in all years. Disease incidence and density were linked by saturation-type relation-

ships based on the zero term of the negative binomial distribution or an empirical regression. Certain individual datasets

were not described well by any incidence–density model, particularly when disease density was greater than about 0Æ8 dis-

eased shoots per plant with the cultivar Cascade. When applied to 56 validation datasets, 88% of the variation in observed

disease incidence was explained by the incidence–density models. Under conditions where sampling would be implemented

for disease management, the requisite conditions appear to be in place for a binomial sampling plan for downy mildew.
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Introduction

Sampling is an essential component of informed disease
management decisions. The level of a disease (measured
as incidence, severity or density) is commonly estimated
by sampling a field or other management unit. The spe-
cific purpose of estimating disease levels may be to assess
efficacy of a management tactic applied previously, to
determine if a fungicide application is warranted (Shoe-
maker & Lorbeer, 1977) or define the intensity of appli-
cations that should be made, or to provide an input to a
disease forecasting model (Johnson & Coil, 1989).

Often, sampling can be simplified and expedited by
simply noting the presence or absence of disease symp-
toms without quantifying the level of disease on individ-
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ual sample units. Such approaches are referred to as
binomial count sample plans. Binomial sampling plans
can reduce sampling costs, particularly for pests that are
difficult to enumerate, although this often comes at the
expense of reduced precision (Binns et al., 2000). The the-
oretical basis for any binomial sample plan is the func-
tional relationship between mean disease density and
incidence, which has been demonstrated for numerous
plants diseases and arthropod pests (Jones, 1994;
McRoberts et al., 2003). In this context, disease density
refers to the number (count) of lesions or other units of
infection (e.g. diseased shoots) expressed relative to an
entire plant or plant part such as a leaf, shoot or branch.
Disease incidence refers to the number or proportion of
plants or plant parts that are diseased. Binomial sampling
allows one to estimate mean disease density per sampling
unit based on the incidence of diseased individuals,
although binomial sampling decreases precision and
introduces bias into a sample compared to full-count
sampling plans (Binns et al., 2000). Development of a
binomial sampling plan requires quantification of disease
patterns to derive a suitable incidence–density relation-
ship, as well as of disease density in multiple cultivars,
fields and seasons to ensure that an incidence–density
relationship is consistent and performs as intended during
sampling plan validation.
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Sampling is commonly conducted to assess the level of
downy mildew (caused by Pseudoperonospora humuli)
in hop (Humulus lupulus) production yards to obtain
inputs needed for disease forecasting (Johnson & Coil,
1989) or other purposes. The disease may result in crop
loss when cones, shoots or crowns become infected, and
in the Pacific Northwest management tactics for the dis-
ease are applied most intensively during wet weather in
spring and early summer to minimize shoot and crown
infections (Skotland, 1961; Skotland & Johnson, 1983).
Reductions in marketable yield vary tremendously
depending on when and how severely the disease occurs,
with the potential for complete crop loss in the worst case
(Royle & Kremheller, 1981). Shoot infections are sys-
temic and result in stunted, brittle shoots often referred to
as ‘basal spikes’ that may support copious sporulation by
the pathogen (Johnson & Skotland, 1985; Johnson et al.,
2009). The pathogen is readily disseminated by airborne
sporangia, which are produced in a rhythmic pattern on
relatively warm, humid evenings and dispersed in mid-
morning (Royle & Kremheller, 1981; Johnson & Skot-
land, 1985). Because of the systemic nature of P. humuli
in hop plants, the pathogen can also invade the root sys-
tem and crown buds (Royle & Kremheller, 1981), result-
ing in persistent, perennial infections of hop plants
(Coley-Smith, 1964). Consequently, the pathogen can be
easily dispersed and established in hop yards via infected
planting materials (Coley-Smith, 1965).

Growers and field scouts routinely estimate downy mil-
dew severity by qualitative or quantitative assessments of
the number of diseased shoots per plant. The incidence of
plants with basal spikes is also an input to a forecasting
model developed for downy mildew management in
Washington State (Johnson & Coil, 1989). Assessing the
density of diseased shoots is difficult because hop plants
may produce hundreds of shoots and quantitative assess-
ments of disease density are time-consuming and tedious.
Disease assessments for downy mildew could be
improved by binomial sampling where only the presence
and absence of basal spikes would need to be determined,
and disease incidence (proportion of plants with downy
mildew) could be used to estimate mean disease density
based on a model of the incidence–density relationship.
To this end, the objectives of this study were to (i) charac-
terize the spatial pattern of downy mildew on hop shoots
within and among plants and (ii) derive an appropriate
incidence–density relationship for use in later binomial
sequential sampling.
Materials and methods

Field sites and data collection

The density of shoots with downy mildew was quantified
in commercial hop yards in the Willamette Valley in wes-
tern Oregon, USA during 2006–2009. All of the hop
yards included in this study were located in Marion
County in northwestern Oregon where most commercial
hop production occurs in Oregon. Hops are long-lived
perennial plants with annual shoots, and in the USA hops
are grown under a permanent trellis approximately 5Æ5 m
tall. Plant spacing can be in a regular lattice pattern or in
wider rows with narrow spacing of plants within rows. In
this study, plant spacing was either 2Æ1 · 2Æ1 m between
plants and rows, respectively (narrow row spacing) or
1 · 4Æ25 m between plants and rows, respectively (wide
row spacing). Yards planted using a narrow row spacing
were irrigated by sprinklers, whereas yards planted on a
wide row spacing were irrigated mostly by surface drip
irrigation. The yards included in this study were planted
to the cultivars Cascade (one yard), Centennial (one
yard), Crystal (one yard), Liberty (one yard), Mt. Hood
(one yard), Nugget (15 yards), Super Galena (one yard),
Vanguard (one yard) and Willamette (seven yards). All
yards were sampled in at least 2 years, except for one yard
each of Nugget, Super Galena and Willamette that were
sampled only during 2008. Resistance to downy mildew
varied among the cultivars included in this study from
highly susceptible (Crystal and Mt. Hood) to moderately
resistant (Willamette; Johnson et al., 2009). The age of
the hop yards ranged from 2 to 20 years.

Model-construction dataset
A model-construction dataset was obtained from data
collected during 2006–2008 from 24 commercial hop
yards in which 472 disease assessments were conducted.
Yards were assessed every 2–3 weeks beginning in early
March and continuing through to early to mid-July. Dis-
ease density (m̂) was assessed using a stratified sampling
approach (Lohr, 1999). Stratified sampling was used
instead of simple random sampling for several practical
reasons. Stratified sampling in space ensures a representa-
tive sample over a target sampling area, in this case a
given hop yard. Given that hop plants are widely spaced,
stratified sampling (as described below) was more conve-
nient and faster to execute than simple random sampling.
Further motivation for stratified sampling was for consis-
tency with sampling protocols for powdery mildew
(caused by Podosphaera macularis), another important
foliar disease of hop that growers routinely monitor by
sampling (Turechek & Mahaffee, 2004).

To conduct the sampling, yards were stratified into
multiple strata (H), where H = number of rows in a
yard ⁄ 20 (rounded-up to the nearest integer). A single
number, r, between 1 and 20 was chosen randomly and
the rth row from each stratum was sampled as a linear
transect as described below. Herein, a row is considered
synonymous with a transect. The stratum size was
selected based on preliminary sampling (utilizing several
sizes of strata) and practical considerations of other
sampling protocols utilized for powdery mildew.

From each transect, the first 50 plants or 100 plants (N;
sampling units) along the transect were inspected and the
number of diseased shoots on each plant was recorded.
Disease assessments were conducted by examining each
plant for signs and symptoms characteristic of shoot
infection by the downy mildew pathogen in the basal
shoots, namely chlorosis and shortened internodes. This
Plant Pathology (2011)



Modelling of hop downy mildew 3
involved moving leaves and shoots around near the base
of each plant so that small shoots could be observed under
the mat of basal foliage that often develops on hop plants.
If downy mildew was presumptively identified, each basal
shoot on the plant was inspected and considered diseased
if sporulation was visible on the abaxial leaf surface
under magnification with a · 50 hand lens. Over the
course of the studies in Oregon nine different raters were
involved with the disease assessments, a necessity when
conducting such large-scale studies, but also a potential
source of error in disease measurements. Raters were
trained in disease assessment methods and their counts
were compared to those of the first author, who was
involved with most of the disease assessments, to ensure
rater biases were minimized.

The number of sampling units assessed per stratrum
was 50 in 2006 and 2007, but because of low disease inci-
dence in the moderately resistant cv. Willamette, 100
sampling units were assessed in 2008. The total number
of transects sampled in a given yard ranged from two to
10. With this sample size the proportion of the row sam-
pled with a given transect varied among yards since the
length of the rows varied among yards (ranging from 31
to over 400 plants). The precise length of every row was
not recorded, although typically the number of plants
sampled was about 25–50% of the total length of the
row. In 6Æ5% of transects, the entire row was sampled.

Many factors may influence the observed pattern of
plant diseases, including for example quadrat shape,
pathogen dispersal characteristics, and edge effects (Xu
& Ridout, 2000). In this analysis plants along the field
edges were included in the spatial analysis because overall
patterns of disease in the management unit (i.e. a hop
yard) were of interest. In practice, growers sample both
the edges and interiors of yards and make management
decisions for the entire yard based on their appraisal of
disease levels. Based on this practical consideration, this
study sought to quantify overall patterns of downy mil-
dew in commercial hop yards, including field edges.

Validation datasets
In 2009, 10 hop yards (five each of cvs Nugget and Wil-
lamette) were sampled every 2 weeks during early April
to mid-July to obtain 80 validation datasets collected
independently of the model-construction datasets. Sam-
pling was conducted as described for the model-construc-
tion datasets. Because of the relatively low incidence of
downy mildew in 2009, 100 plants were assessed per
transect in the yards planted to cv. Willamette, as in 2008.

Additionally, 16 datasets collected previously (John-
son et al., 1991) from hop yards in Washington State
during 1988 and 1989 were used to validate the inci-
dence–density relationships described below. A full
description of these yards, including a detailed spatial
analysis of the epidemics, is provided in Johnson et al.
(1991). Briefly, four hop yards planted to the highly sus-
ceptible cv. Cluster L-1 located in the lower Yakima Val-
ley or near the Yakima Indian Reservation were selected
for downy mildew density assessments in 1988 and 1989.
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A rectangular area of plants (1Æ9–2Æ3 ha in size) was
selected arbitrarily and the number of infected shoots on
all plants in the sampling area was assessed at least twice
during spring to early summer. Because the size and shape
of the sample unit may affect some spatial analyses (Binns
et al., 2000), the datasets from Washington were sub-
jected to simulated sampling. To do this, the sampling
area in the Washington hop yards was stratified as
described for the Oregon datasets and a transect was
selected randomly from each stratum for sampling. These
datasets were then used in the analysis described below.
Spatial analysis

Distributional analysis
The Poisson and negative binomial distributions were fit-
ted to disease density data (i.e. the frequency distribution
of the number of diseased shoots per plant) using the com-
puter program DISCRETE (Gates & Ethridge, 1972). For
discrete data with no upper limit, a good fit to the Poisson
distribution is an indication of a random pattern of dis-
eased plants, whereas a good fit to the negative binomial
distribution is an indication of an aggregated disease pat-
tern at the scale of the sampling unit (Binns et al., 2000).
Goodness of fit was determined with a chi-square test
after pooling adjacent categories that had small expected
frequencies until the cumulative frequency exceeded 1.
Parameters were estimated using the maximum likeli-
hood estimator in DISCRETE.

Autocorrelation
First- and second-order spatial autocorrelation statistics
were calculated to quantify the similarity of disease
density between neighbouring plants within individual
transects (Madden et al., 2007). Spatial autocorrelation
analyses were not performed among plants in different
transects because the location of these plants and
transects was not recorded. From the 1936 rows where
disease assessments were conducted, 349, 344 and 150
rows had at least one diseased shoot in 2006, 2007 and
2008, respectively. Count data were log-transformed
before calculating autocorrelation statistics in MINITAB

version 15 (Minitab Inc., State College, PA, USA).

Runs analysis
Ordinary and median runs analyses were performed to
characterize larger-scale patterns of diseased plants
within individual transects. For ordinary runs analysis, a
plant was considered diseased if at least one diseased
shoot was observed in that sampling unit. For median
runs analysis, the median number of diseased shoots was
calculated for each dataset, and plants were assigned a
value of 1 or 0 if the number of diseased shoots on that
plant was above or below the median, respectively. For
both analyses, a run was defined as a succession of one
or more plants with similar disease status (non-diseased
or diseased; Madden et al., 1982). The expected number
of runs was calculated and used to produce a Z-statistic
to test the null hypothesis that the number of runs was not
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different significantly (P £ 0Æ05) from the expected num-
ber of runs, indicating a random pattern of disease among
plants. Runs analysis were conducted using MINITAB ver-
sion 15.

Power law analysis
For disease density or other discrete data with no upper
limit, Taylor’s power law (Taylor, 1961, 1984; Taylor &
Taylor, 1977) provides a simple model to quantify aggre-
gation at the scale of individual sampling units. Taylor’s
power law relates the observed variance (vobs) to the pop-
ulation mean (m) for count data with no upper limit by

vobs ¼ amb ð1Þ
where a and b are parameters estimated by regression
after logarithmic transformation of Eqn 1 to

lnðvobsÞ ¼ lnðaÞ þ b logðmÞ ð2Þ

The parameter b is considered an index of aggregation,
providing a measure of the degree of ‘density dependence
of aggregation’ (Taylor & Taylor, 1977). For count data,
vobs = m (i.e. a = b = 1), indicates a random pattern of
disease density. Parameter estimates of a and b > 1 indi-
cate aggregation at the scale of the sampling unit depen-
dent on disease density.

Least squares regression was used to estimate the inter-
cept and slope parameters of Taylor’s power law using
SAS version 9Æ2 (PROC REG, SAS Institute). Covariance
analysis was conducted to test for the effects of the factors
year of sampling (2006, 2007 and 2008), time of season
(April, May, June, July), cultivar (Willamette, Nugget,
and the remaining other cultivars), and row spacing (‘nar-
row’ or ‘wide’ row spacing) on the slope and intercept
parameters of Taylor’s power law. Covariance analyses
were performed in SAS (PROC GENMOD) as described
by Gent et al. (2008). Briefly, each of the factors was
added individually as an intercept term and then as an
interaction term with the slope. The analyses were con-
ducted on each year, and then a separate analysis was
conducted to determine the effect of year on estimates of
ln (a) and b. A factor was considered significant if inclu-
sion of the factor as a covariate significantly reduced the
sum of square error (SSE) as compared to the null model
without the factor. The significance level for the differ-
ence between SSE of the models was determined by an F
test where F = (factor SSE ⁄ d.f. factor) ⁄ (model SSE ⁄ d.f.
model), and d.f. = degrees of freedom.
Incidence–density relationships

Several approaches to characterize the incidence–density
relationship between the incidence of plants with downy
mildew and the density of diseased shoots were investi-
gated. From the disease density data, disease incidence,
p̂, was calculated as the proportion of plants with at least
one diseased shoot. Disease density data collected during
2006–2008 was used to fit the following incidence–den-
sity relationships, and the validation datasets collected in
2009 were used to the validate the models.
Poisson distribution
In the simplest case, an incidence–density was derived
assuming that the number of infected shoots on plants fol-
lowed a Poisson (random) distribution. In this case, the
probability, p, of at least one diseased shoot being found
on a sampling unit (plant) when mean disease density is m
can be expressed as

p ¼ 1� Pð0jmÞ ¼ 1� expð�mÞ ð3Þ
where P(0) is the probability of plants with no dis-
eased shoots. The probability p can be estimated
directly from disease incidence from the sample of N
plants. The inverse of Eqn 3 allows determination of
m given an estimate of p by

m ¼ � lnð1� pÞ ð4Þ

Negative binomial distribution with k expressed by
Taylor’s power law
Equations 3 and 4 may provide an adequate description
of data if the spatial pattern of disease density is randomly
distributed, although another distributional model may
be needed when disease density is aggregated. Based on
the results of the distributional analyses (described
below), the negative binomial distribution provided a
good description of most of the datasets. The negative
binomial distribution is a flexible distribution with two
parameters, the mean density m (sometimes referred to as
l) and an aggregation parameter k. For a fixed m, vari-
ance decreases with increasing k, and for very large values
of k the negative binomial becomes indistinguishable
from the Poisson distribution (Binns et al., 2000). The
zero term of the negative binomial distribution is
(m ⁄ k + 1))k and provides the number of sampling units
with no diseased individuals. By taking the complement
of the zero term, the proportion of sampling units with at
least one diseased individual is given by

p ¼ 1� ðm=kþ 1Þ�k ð5Þ
with the inverse of Eqn 5 being

m ¼ k½ð1� pÞ�1=k � 1� ð6Þ

The parameter k provides an indication of the aggrega-
tion of disease density at the scale of the sampling unit,
although k may vary depending on the size (or shape) of
the sampling unit and m (Binns et al., 2000). When sam-
pling is conducted in multiple fields, each field will have a
separate value of k, although a single value of k is needed
for designing a sequential sampling plan. Bliss & Owen
(1958) described methods to calculate a common value of
k, kc, and provided diagnostic tests for determining the
homogeneity of k values between datasets and the appro-
priateness of a kc. In preliminary analyses, a regression of
1 ⁄ k versus mean disease density had a significant and
non-zero slope (P < 0Æ0001) and intercept (P < 0Æ0001),
indicating the appropriateness of a kc for these datasets
was questionable (Bliss & Owen, 1958). Influence analy-
sis (Quinn & Keough, 2002) identified five datasets as
having high ‘leverage’, although the slope and intercept
Plant Pathology (2011)
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terms in the regression still had significant (P < 0Æ0001)
and non-zero parameter estimates when these datasets
were removed from the analysis. Therefore, a kc from
these datasets was not deemed appropriate.

For a given sampling unit size and shape, the density
dependence of k also can be modelled empirically by Tay-
lor’s power law. Using the moment estimate of the aggre-
gation parameter, Wilson & Room (1983) showed that
one can express k in terms of m and a and b from Taylor’s
power law as

k ¼ m2

amb �m
ð7Þ

Substitution of k as defined in Eqn 7 into Eqn 5 leads to

p ¼ 1� exp½�mðamb�1 � 1Þ�1 lnðamb�1Þ� ð8Þ

However, an inverse of Eqn 8 does not exist and there-
fore this equation is not helpful for estimating m as a func-
tion of disease incidence and aggregation expressed by
Taylor’s power law parameters. Thus, other formula-
tions of incidence–density relationships were explored as
described below.

Empirical regression model
The Kono–Sugino equation also was used to estimate m
from p (McRoberts et al., 2003). In this approach, an
empirical regression based on the complementary log-log
(a)

(c)

Figure 1 Frequency distribution of mean disease density m (a), disease in

distribution (c), and first-order autocorrelation statistic r1 (d) for the densit

sampled from commercial hop yards in Oregon during 2006–2008. Bars a
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transformation of disease incidence, CLL(p) = ln [–ln (1 –
p)] was directly regressed on the natural log transforma-
tion of m through the equation

CLLðpÞ ¼ lnða0Þ þ b0 lnðmÞ ð9Þ
which corresponds to the relationship p = 1 – exp(–
amb). Parameters a¢ and b¢ in Eqn 9 are estimated by
regression, and are distinct from parameters a and b in
Taylor’s power law. The inverse of Eqn 9 allows for
estimation of m as a function of p and is expressed as

lnðmÞ ¼ lnðcÞ þ d CLLðpÞ ð10Þ

Equation 9 was fitted using the REG procedure in SAS.
Predictions of m based on p based on Eqns 3, 8 and 10
were evaluated with the independent validation datasets.
Results

Disease density and incidence

From the 472 sampling events in the model-construction
dataset, downy mildew was observed in 261 of the assess-
ments. Disease density ranged from 0 to 24Æ39 diseased
shoots per plant, with mean 0Æ52 and median 0Æ004
(Fig. 1a). Disease incidence ranged from 0 to 0Æ997, with
mean 0Æ09 and median 0Æ004 (Fig. 1b).
(b)

(d)

cidence p (b), aggregation parameter k of the negative binomial

y of shoots with downy mildew (Pseudoperonospora humuli)

re centered over binning values.



Table 2 Slope and intercept parameter estimates of Taylor’s power law fit

to the density of hop shoots with downy mildew (Pseudoperonospora

humuli) sampled from commercial hop yards in Oregon

Year d.f. b (SE) ln (a) (SE) R2

2006 88 1Æ24 (0Æ03) 1Æ15 (0Æ08) 0Æ95

2007 105 1Æ26 (0Æ02) 1Æ32 (0Æ07) 0Æ96

2008 27 1Æ34 (0Æ06) 1Æ66 (0Æ20) 0Æ95

All 224 1Æ25 (0Æ02) 1Æ25 (0Æ05) 0Æ96

d.f.: degrees of freedom for regression; b and ln (a): slope and

intercept estimates, respectively. SE: standard error of the mean.
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Spatial analysis

Distributional analysis
The maximum likelihood procedure in DISCRETE con-
verged for 130 of the 261 datasets where m > 0 when
fitting the Poisson distribution. In all cases when the
procedure did not converge there were three or less dis-
eased shoots present in the datasets. For the 130 data-
sets where the procedure converged, the Poisson
distribution fitted only 4% of the datasets (Table 1).
The negative binomial distribution provided an ade-
quate fit in 87% of the 119 datasets where the maxi-
mum likelihood procedure converged for this
distribution fitting, indicating a substantial degree of
aggregation of diseased shoots within plants. The distri-
bution of the aggregation parameter k was right-skewed
with median 0Æ21 and mean 0Æ61 (Fig. 1c), and k tended
to increase with m (Table 1).

Autocorrelation
For all row-level datasets where m > 0, the distribution
of the first order autocorrelation statistic (r1) was right-
skewed with median )0Æ021 and mean 0Æ065 (Fig. 1d).
The degree of autocorrelation indicated a low level of
aggregation of disease density between plants when mean
disease density was ‡ 1 diseased shoot per plant (Fig. 1d).
Median values of r1 when disease density was < 1 dis-
eased shoot per plant ranged between )0Æ02 and 0Æ03,
indicating that disease density was largely random
between plants (Table 1).
Table 1 Frequency distribution models fitted to counts (density) of hop shoots wi

datasets collected from commercial hop yards in Oregon during 2006–2008

Disease density

classa Tb

Distributionc

Poisson

Negative

binomial

0 211 – –

0Æ00–0Æ10 27 0Æ07 (27) 0Æ94 (16)

0Æ10–0Æ50 52 0Æ06 (52) 0Æ92 (52)

0Æ50–1Æ00 18 0 (18) 0Æ83 (18)

1Æ00–5Æ00 20 0 (20) 0Æ80 (20)

> 5Æ00 13 0 (13) 0Æ69 (13)

All (> 0) 130 0Æ04 (130) 0Æ87 (119)

aMean density of hop shoots with downy mildew per plant. Disease densi

highest value above that listed. Data are not presented for 131 datasets w

of lack of convergence of the maximum likelihood estimation procedure u

from 0Æ003 to 0Æ030 with mean = 0Æ015 and median = 0Æ009.
bNumber of datasets (hop yards) in each disease density class where the

distribution.
cProportion of datasets for which the said distribution provided an adequa

of-fit test (P £ 0Æ05). The number of datasets in which the maximum likelih

Distributions were fitted using the program DISCRETE (Gates & Ethridge, 19
dMedian estimated value of the negative binomial distribution parameter (

calculated with data for individual transects (rows) and not all transects w

density class was: 1055 (0), 372 (0Æ00–0Æ10), 259 (0Æ10–0Æ50), 84 (0Æ50–1Æ0
eProportion of datasets in which runs analysis indicated significant aggreg

individual transects and not all transects within a yard.
Runs analysis
Ordinary runs analysis indicated that diseased plants
were aggregated in 15% of the row-level datasets where
disease was detected (Table 1). Aggregation of diseased
plants did not appear to be systematically related to dis-
ease density, although median runs analysis suggested
that the aggregation of downy mildew increased with
mean disease density (Table 1).

Power law analysis
Taylor’s power law was fitted to the 226 datasets where
more than one diseased shoot was observed (Table 2;
Fig. 2). The model provided a good fit to the data, with
R2 values of at least 0Æ95 for all years. Parameter esti-
mates for b were > 1 in all years (P < 0Æ0001), whereas
parameter estimates for ln (a) were > 0 in all years
th downy mildew (Pseudoperonospora humuli) and tests of aggregation for

Median valuesd Runs analysise

k r1 Ordinary Median

– – – –

0Æ04 )0Æ02 0Æ15 0Æ14

0Æ12 )0Æ02 0Æ17 0Æ19

0Æ28 0Æ03 0Æ08 0Æ21

0Æ50 0Æ08 0Æ12 0Æ25

2Æ61 0Æ13 0Æ18 0Æ28

0Æ21 )0Æ02 0Æ15 0Æ19

ty classes end with the indicated value and start with the next

here three or fewer diseased shoots in total were present because

sed for distribution fitting. Disease density in these datasets ranged

maximum likelihood procedure converged when fitting the Poisson

te description of the data as determined by a chi-square goodness-

ood estimation procedure converged is shown in brackets.

72).

k) and the first-order autocorrelation statistic (r1). Autocorrelation was

ithin a yard. The number of row-level datasets for each disease

0), 99 (1Æ00–5Æ00), 67 (> 5Æ00) and 881 (all > 0).

ation (P £ 0Æ05). Runs analysis was calculated with data from

Plant Pathology (2011)



Figure 2 Relationship between the logarithms of mean disease

density and variance of the density of downy mildew

(Pseudoperonospora humuli ) on hop shoots sampled from

commercial yards in Oregon during 2006–2008. The solid line is the

least squares regression fitted to the data; the dashed line is the

line for a Poisson (random) distribution of disease density.

Modelling of hop downy mildew 7
(P £ 0Æ0001). Therefore, disease density was aggregated
in all years, and the degree of aggregation was density
dependent.
Table 3 Covariance analysis of the effect of cultivar, season and row spacing on

density of hop shoots with downy mildew (Pseudoperonospora humuli)

Factor and yeara d.f. model d.f. factor

ln (a)

SSE Diff.

2006

Power law 88 29Æ87 –

Cultivar 85 3 28Æ15 1Æ72

Season 86 2 21Æ97 7Æ90

Spacing 87 1 28Æ91 0Æ96

2007

Power law 105 25Æ88 –

Cultivar 102 3 23Æ48 2Æ40

Season 103 2 21Æ48 4Æ41

Spacing 104 1 25Æ70 0Æ19

2008

Power law 27 5Æ27 –

Cultivar 25 2 5Æ26 0Æ01

Season 25 2 5Æ08 0Æ20

Spacing 26 1 5Æ27 0Æ00

d.f. model: degrees of freedom for the model; d.f. factor: degrees of freed

Diff.: difference between the SSE of the binary power law model versus th

first as an intercept and then as a slope.
aCultivars were categorized as ‘Willamette’, ‘Nugget’ or ‘Other’. The factor

May or June. The factor ‘spacing’ refers to plant arrangement with 3Æ5 m (
bSignificance level for the difference between SSE of the binary power law

determined by an F test, where F = (factor SSE ⁄ d.f. factor) ⁄ (model SSE ⁄
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Covariance analysis indicated that ln (a) and b were
affected by the time of season when disease assessments
were conducted in 2006 and 2007 (P £ 0Æ013; Table 3).
Row spacing also affected b in 2006 (P = 0Æ043). The
slope and intercept parameter estimates were similar
between years (P ‡ 0Æ07; Table 4), and a regression based
on the data pooled over years had ln (a) = 1Æ25
(SE = 0Æ05) and b = 1Æ25 (SE = 0Æ02).
Validation datasets

Spatial analysis
Among the 80 validation datasets collected in 2009 in
Oregon, downy mildew density ranged from 0 to 2Æ70 dis-
eased shoots per plant, with mean 0Æ18 and median 0Æ01.
The incidence of plants with downy mildew ranged from
0 to 0Æ58, with mean 0Æ07 and median 0Æ01. A total of 50
datasets had at least one diseased shoot, and there were
40 datasets where more than one diseased shoot was
observed. Among these 40 datasets, the maximum likeli-
hood procedure for fitting the Poisson distribution in DIS-

CRETE converged for 25 of the datasets; the Poisson
distribution provided an adequate description of only
one (4%) dataset. The procedure converged for 20 data-
sets when fitting the negative binomial distribution, and
this distribution provided an adequate description of 18
(90%) of these datasets.

Taylor’s power law was fitted to the 40 datasets from
Oregon and 16 datasets from Washington where more
than one diseased shoot was observed (Fig. 3). The
intercept (ln [a]) and slope (b) parameters of Taylor’s power law for the

b

Fb P SSE Diff. F P

29Æ87 –

1Æ73 0Æ170 28Æ48 1Æ39 1Æ39 0Æ253

15Æ47 0Æ000 26Æ30 3Æ57 5Æ83 0Æ004

2Æ89 0Æ093 28Æ48 1Æ39 4Æ24 0Æ043

25Æ88 –

3Æ48 0Æ019 24Æ08 1Æ80 2Æ54 0Æ061

10Æ56 0Æ000 23Æ77 2Æ11 4Æ57 0Æ013

0Æ76 0Æ386 25Æ88 0Æ01 0Æ02 0Æ875

5Æ27 –

0Æ02 0Æ978 5Æ26 0Æ01 0Æ02 0Æ976

0Æ49 0Æ619 5Æ12 0Æ15 0Æ36 0Æ698

0Æ02 0Æ891 5Æ26 0Æ01 0Æ04 0Æ835

om for factor. SSE: sum of square error for the covariance model;

e binary power law model with each factor included in the analyses

‘season’ refers to month of year and had three categories: April,

narrow spacing) or 7 m (wide spacing) between rows.

model versus binary power law model with each factor as

d.f. model).



Table 4 Covariance analysis of the effect of year of sampling on the intercept (ln [a]) and slope (b) parameters of Taylor’s power law for the density of hop

shoots with downy mildew (Pseudoperonospora humuli)

Factor d.f. model d.f. factor

ln (a) b

SSE Diff. Fa P SSE Diff. F P

Power law 224 63Æ01 – – – 63Æ01 – – –

Year 222 2 61Æ53 1Æ48 2Æ66 0Æ07 62Æ70 0Æ305 0Æ54 0Æ58

d.f. model: degrees of freedom for the model; d.f. factor: degrees of freedom for the factor ‘year’; SSE: sum of square error for the covariance

model; Diff.: difference between the SSE of the power law model versus the power law model with the factor ‘year’ included in the analyses

first as an intercept and then as an interaction with the slope.
aSignificance level for the difference between SSE of the power law model versus power law model with the factor ‘year’ as determined by an

F test, where F = (factor SSE ⁄ d.f. factor) ⁄ (model SSE ⁄ d.f. model).

Figure 3 Relationship between the logarithms of mean disease

density and variance of the density of downy mildew

(Pseudoperonospora humuli) on hop in validation datasets collected

from Oregon in 2009 and Washington in 1988 and 1989. The solid

line is the least squares regression fitted to the data; the dashed

line is the line for a Poisson (random) distribution of disease

density.
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estimated parameters of the regression were ln (a) = 1Æ60
(SE = 0Æ13) and b = 1Æ38 (SE = 0Æ05), with R2 = 0Æ93.
Parameter estimates for a and b were both significantly
> 1 (P < 0Æ0001).
Incidence–density relationships

The incidence of plants with downy mildew was related
to the mean density of shoots with downy mildew by a
saturation-type relationship (Fig. 4a). Observed disease
incidence increased more slowly with increasing mean
disease density than expected under an assumption of a
Poission distribution, as expected from aggregation of
disease density. Incidence–density models based either on
the negative binomial distribution or a complementary
log-log transformation generally provided a reasonable
fit to the data collected during 2006–2008, particularly
when disease density was less than about 0Æ8. In the model
based on the zero term of the negative binomial distribu-
tion, p increased more rapidly with m than in the empiri-
cal model based on the complementary log-log
transformation. The logarithm of the mean number of
diseased shoots per plant was well related to the comple-
mentary log-log transformation of disease incidence,
with parameter estimates of ln (a¢) = )0Æ783 (SE =
0Æ028) and b¢ = 0Æ846 (SE = 0Æ009) and R2 = 0Æ97
(P < 0Æ0001). The fit of this model was not improved by
including the factor ‘year’ as an intercept term or interac-
tion term with the slope (P ‡ 0Æ059).

Certain individual datasets were not described well by
any incidence–density model, particularly when m was
greater than about 0Æ8 diseased shoots per plant. For six
of these datasets, p was substantially less than predicted
based on the observed m; five of these datasets were col-
lected from hop yards planted to cv. Cascade and one of
cv. Nugget.

Validation dataset
When the number of diseased shoots per plant was
assumed to follow a Poisson distribution, the predicted
number of diseased shoots based on disease incidence
generally was biased and greater than observed (Fig. 4b).
Despite this bias, all three incidence–density models
explained approximately 88% of the variation in
observed disease incidence in the validation datasets
based on a regression of predicted mean density on
observed mean density. As observed in the model-devel-
opment datasets, there was more variability in observed
incidence–density relationship as m increased. Systematic
prediction errors were not observed in the validation
datasets for Oregon or Washington (Fig. 4b).
Discussion

Quantification of spatial patterns of plant disease is a pre-
requisite to designing statistically sound sampling meth-
ods, and for linking disease incidence and density
(McRoberts et al., 2003; Madden et al., 2007). In this
study, the incidence and density of downy mildew on hop
shoots were quantified using a polyphasic approach to
characterize patterns of the disease at multiple spatial
Plant Pathology (2011)



(a)

(b)

Figure 4 Observed and fitted relationships between the mean

density of hop shoots with downy mildew (Pseudoperonospora

humuli) and the incidence of hop plants with downy mildew used for

model development (a) and validation with independent datasets

collected in Oregon and Washington (b). CLL transformation refers

to an empirical regression approach based on a complementary

log-log transformation of disease density.
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scales. At the scale of individual plants, the density of dis-
eased shoots was highly aggregated, as indicated by the
good fit of the negative binomial distribution and the
poor fit of the Poisson distribution to most of the datasets.
There were some datasets where neither distribution pro-
vided an adequate fit. This appeared to be mostly a com-
putational issue related to convergence of the maximum
likelihood procedure at low disease density, although
there was a trend for the negative binomial to describe a
smaller proportion of the datasets as m increased
(Table 1). The increasing median value of the aggregation
parameter k with increasing m suggests that the pattern
of disease density became less aggregated, but not neces-
Plant Pathology (2011)
sarily randomly distributed since the Poisson distribution
did not fit any of these datasets. Other distributions also
were fitted to the datasets, including the Neyman type A,
Thomas double Poisson, Poisson with zeros, and loga-
rithmic with zeros, but none was found to provide a better
description than the negative binomial of the distribution
of disease density at high values of m. Johnson et al.
(1988, 1991) reported similar findings in their studies on
hop downy mildew on highly susceptible cultivars in
Washington State. In those studies, the negative binomial
provided a good description of the data when p was rela-
tively low, but no distribution provided an adequate fit
when p > 0Æ16 (Johnson et al., 1991). In the current
study, the negative binomial fitted 84% of datasets where
p > 0Æ16 and the goodness-of-fit of this distribution, as
expected, was related more to the value m rather than p.

Power law analysis also suggested that disease density
was aggregated at the scale of individual plants, and simi-
larly indicated that the degree of aggregation was density
dependent. Such a finding is typical of most plant dis-
eases, as well as arthropod pests, at numerous spatial
scales (Taylor, 1961, 1984; Taylor et al., 1978; Xu &
Madden, 2002; Li et al., 2007; Madden et al., 2007). Cul-
tivar, time of the season when sampling was conducted,
and row spacing influenced the intercept and slope
parameters in certain years, but no factor had a consistent
effect on the intercept or slope during all 3 years. Parame-
ter estimates also tended to be relatively stable among all
years (Table 4).

Beyond the scale of individual plants, autocorrelation
and median runs analyses suggested that larger-scale pat-
terns of disease density among plants were less common
within rows. There was a trend for a greater proportion
of datasets to display aggregation of disease density as m
increased, but overall aggregation of disease density
appeared to be most distinct at the scale of individual
plants with the cultivars evaluated in the current study. In
other spatial analyses of downy mildew diseases, epidem-
ics tend to dominated by spatial aggregation at small spa-
tial scales (e.g. Madden et al., 1995; Scott et al., 2003) but
also at very large spatial scales (Wu et al., 2001; Ojiambo
& Holmes, 2011). The similar patterns at both scales
may be largely influenced by the high fecundity and
dispersal characteristics of downy mildew pathogens.
Epidemics of downy mildew on hop appear to be an
extreme case of small-scale aggregation, presumably
owing to the systemic nature of rootstock infection and
persistence on individual plants (Coley-Smith, 1964).
Although large-scale patterns of disease were not consid-
ered in the current study, one might expect that P. humuli
could be dispersed over distances similar to those of the
very closely related pathogen P. cubensis (Choi et al.,
2005; Runge et al., 2010; Mitchell et al., 2011). Dispersal
of P. cubensis is thought to occur over the range of hun-
dreds of kilometres, with evidence of spatial autocorrela-
tion apparent at ranges of up to 1000 km (Ojiambo &
Holmes, 2011). Apparently, no studies have investigated
long distance dispersal of P. humuli or landscape-level
patterns of hop downy mildew.
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It is relevant to contrast this finding with previous stud-
ies conducted with hop cultivars susceptible to the crown
rot phase of downy mildew (Johnson et al., 1991). Pseu-
doperonospora humuli can invade and persist in the root
system of hop plants (Coley-Smith, 1964, 1965; Royle &
Kremheller, 1981), resulting in a root and crown rot in
certain susceptible cultivars (Johnson et al., 2009). In
Washington State, severe outbreaks of downy mildew
occur on average in about one-third of years (Johnson
et al., 1983). The hop production regions in central
Washington are semiarid and outbreaks of downy mil-
dew tend to occur only during seasons with frequent
spring rains. Consequently, some cultivars that are highly
susceptible to crown rot can be produced commercially
since downy mildew occurs sporadically in this semiarid
environment. Conversely, downy mildew is endemic in
the cool, maritime climate of western Oregon and only
cultivars with a high degree of tolerance to the crown rot
phase of the disease can be produced successfully (Skot-
land & Johnson, 1983). In Washington State, Johnson
et al. (1988, 1991) reported that when disease incidence
was relatively low downy mildew was aggregated pri-
marily at the scale of individual plants, and larger-scale
patterns of disease were related to the age of the hop yard
because of the death and replanting of plants affected by
downy mildew. In contrast, plant death and subsequent
replanting is uncommon in Oregon since the cultivars
produced are tolerant to crown rot. Consequently, in the
current study, aggregation of downy mildew was most
conspicuous at the scale of individual plants, and larger-
scale patterns of disease were related to disease density
rather than age of the yard.

Indeed, the relationship between incidence and density
of downy mildew on shoots was well described by a
model based on the zero term of the negative binomial
distribution, with a few notable exceptions. The relation-
ship between incidence and density of downy mildew
appeared to deviate in individual fields from the model
predictions when disease density was relatively high
(m > 3). This deviation could be caused, in part, by the
negative binomial not being the appropriate distribution
for describing disease density when disease density is rela-
tively high. As stated previously, the proportion of data-
sets described by the negative binomial decreased with
increasing disease density. However, an incidence–den-
sity relationship based on an empirical regression did not
improve the fit of the incidence–density model. Part of the
variability observed appears to be related to inherent dif-
ferences in cv. Cascade, for which estimates of m based
on p tended to be underestimated. In the USA, cv. Cas-
cade is relatively tolerant to downy mildew crown rot,
but susceptible to shoot infection (Johnson et al., 2009).
The mechanism of this tolerance may affect the dynamics
of disease incidence and density differently than in other
tolerant cultivars included in this study, such as Willam-
ette.

Regardless of the biological mechanisms involved in
generation of the observed incidence–density relation-
ships, deviation in the relationship at relatively larger
values of m probably are of little practical consequence
for routine disease management. Although critical densi-
ties associated with economic thresholds have not been
derived for downy mildew, growers routinely manage the
disease at levels much less than three diseased shoots per
plant (Johnson & Coil, 1989). In practice, some growers
may make downy mildew fungicide applications preven-
tatively, at the first detection of disease, or when disease
incidence or density begins to increase based on sampling.
In all of these cases, control measures are applied rela-
tively early in disease outbreaks, e.g. when m < 1. The
relationship between p and m was approximately linear
when m < 1, which is where sampling for downy mildew
generally would be of greatest practical value for deter-
mining the need for control measures.

A prerequisite for use of a binomial sampling plan is a
stable, or at least predictable, relationship between dis-
ease incidence and density over space and time. Although
this relationship seems to be less predictable with cv. Cas-
cade, overall the incidence–density relationships based
on the negative binomial distribution or an empirical
regression model performed adequately during valida-
tion with three cultivars. It is interesting to note that the
incidence–density relationship seemed to hold even for
the datasets collected in Washington State with the highly
susceptible cv. Cluster (Fig. 4b). As stated previously, this
cultivar is susceptible to crown rot and no probability dis-
tribution (including the negative binomial) was found to
describe the distribution of diseased shoots on this culti-
var when p > 0Æ16 (Johnson et al., 1991). Under relatively
low levels of disease density considered in this study,
approximately 88% of the observed variability in disease
incidence could be explained by the incidence–density
models. Therefore, under conditions where sampling
would be most valuable for disease management, the req-
uisite conditions appear to be in place for development
and use of a binomial sampling plan for hop downy mil-
dew. Such a binomial sampling plan will be developed in
future research.
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